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Francisca Guerrero • Gabriel Gascó
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Abstract The objective of this study is to study the

influence of de-inking paper sludge (DPS) and sewage

sludge (SL) mixtures addition at different rates (2, 4 and

8%) in two soils. Incubation experiments were performed

during 60 days and the influence of treatments in physical

soil properties was determined by soil porosity and stability

of aggregates. Differential thermal analysis (DTA) of

amended soils after incubation was performed. Experi-

mental results show that amendment increased biological

soil activity, soil porosity and stability of aggregates. DTA

analysis shows that the first exothermic peak generally

increases with the dosage of DPS:SL due to the addition of

immature organic matter. Moreover, the second peak

enlarges probably due to the humification process during

incubation.
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Introduction

Climate and inadequate land management in Mediterra-

nean area had led to a reduction in the organic soils content

[1]. This fact can cause a negative effect on the chemical,

biological and physical properties of the soils. Indeed, the

application of organic residues to agricultural soils is a

widespread practice in Mediterranean areas [2].

On the other hand, paper pulp manufacturing generates

important amount of waste materials. In recent years, an

increasing proportion of recycled fibres are used in paper

industries due to their important environmental and eco-

nomical benefits. A ton of pulp produced from recycled

paper requires 60% less energy to manufacture than a ton

of bleached virgin kraft pulp [3]. However, paper recycling

leads to large amounts of de-inking paper sludge (DPS)

composed by cellulose fibres, removed inks, clay fillers and

other chemical additives. The production of this type of

waste material is very important around the world [4, 5].

For example, Spanish paper industry generated more than

200.000t of DPS in 2006.

Due to their high organic matter content, DPS could be

used as amendment to improve soil fertility and biological

functioning [6]. The application of DPS can markedly

improve physical properties as macroaggregate stability [7]

or water holding capacity [8] reducing the risk of soil ero-

sion. Also, DPS can increase cation exchange capacity [9],

decrease soil acidification and soil metal pollution [10] and

improve biological activity [8]. Moreover, DPS can be use

in the reintroduction of woody species as alder or aspen in

the restoration and revegetation of degraded sites [11].

However, C/N ratio of DPS can be quite high (100–300) and

their soil application could originate a temporary immobi-

lization of soil nitrogen [12]. Indeed, co-composting of DPS

with poultry manure and chicken broiler litter [13] or

wastewater sludge [14] has shown a complete stabilization

of the material. Other source of nitrogen can be sewage

sludges (SL) which have been used in agricultural soils as

an alternative to traditional mineral fertilisers due to their
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high contents in organic matter and essential nutrients such

as nitrogen and phosphorous [2].

The objective of this study is to study the influence of

DPS and SL mixtures addition at different rates (2, 4 and

8%) in two soils with different pH, texture and organic

matter content. An incubation experiment was performed

during 60 days and final samples were analysed by dif-

ferential thermal analysis (DTA).

Experimental

Soil characterization

The two selected soils named SA and SN were sampled in

Madrid Region (Spain). Soil SA is located in Valdeolmos

city and SN in San Sebastián de los Reyes city. Soil SA is

classified as Typic Palexeralf by USDA-SSS Soil Taxon-

omy and as Luvisol by FAO, while Soil SN is classified as

Typic Haploxeralf by USDA-SSS Soil Taxonomy and as

Luvisol by FAO.

Both samples were air-dried, crushed and sieved through

a 2 mm mesh. Soil metal content was determined using a

Perkin Elmer 2280 atomic absorption spectrophotometer

after sample extraction by digestion with 3:1 (v/v) con-

centrated HCl/HNO3 following 3051a method [15]. Initial

pH and electrical conductivity (EC) were determined in a

ratio soil:water of 1:2.5 (g mL-1). pH was measured using

a Crison micro-pH 2000 [16] and EC with a Crison 222

conductivimeter following Rhoades’ method [17]. Soil

total organic carbon (TOC) was determined by ashing

samples at 540 �C [18]. Nitrogen content was determined

by the Kjeldahl method [19] with a Büchi 435 digestor.

Soil cation exchange capacity (CEC) was determined with

NH4OAc/HOAc at pH 7.0 [20]. Soil cations (Ca2?, Mg2?,

Na? and K?) moved with NH4OAc/HOAc at pH 7.0 were

measured using a Perkin Elmer 2280 atomic absorption

spectrophotometer. CaCO3 content was measured by

treating samples with HCl and measuring the evolved CO2

manometrically. Soil texture was determined following

Bouyoucos methodology [21] and soil moisture charac-

teristics according to Richards [22].

Organic waste materials characterization

De-inking paper sludge and SL wastes were air-dried,

crushed and sieved through a 2 mm mesh. Total organic

carbon (TOC) of wastes was determined by ashing samples

at 540 �C [18]. Nitrogen content was determined by the

Kjeldahl method [19]. CaCO3 content was measured by

treating samples with HCl and measuring the evolved CO2

manometrically. Total content of Cr, Ni, Cu, Zn, Cd, Pb

and Ca, Mg, Na and K was determined following 3051a

method [15] using a Perkin Elmer 2280 atomic absorption

spectrophotometer.

Treatments

Soils were amended with mixtures of DPS and SL (1:1

mass) at three different rates (2, 4 and 8%) leading to

SA20, SA40 and SA80 treatments for SA soil and SN20,

SN40 and SN80 treatments for SN soil.

Treatment evaluation

The biological activity of different treatments was

evaluated by C mineralization in soil (cumulative CO2

evolution), total mineralization coefficient (TMC) and

humification index (HI60).

The CO2 evolved was evaluated during 60 days at a

temperature of 28 ± 2 �C as follows: the decomposition

rate was determined by passing CO2 and NH3 free air

through the respiration vessels, trapping the evolving CO2

in 50 mL of 1 M NaOH and periodic titration of the CO2

trapped with 1 M HCl after BaCl2 precipitation of car-

bonates. Triplicate CO2 measurements were taken period-

ically. Another three vessels without soils were used as

blanks for each measure of evolving CO2 [23].

Total humic substances after incubation were extracted

with a mixture of 1 M Na4P2O7 and 0.1 M NaOH, centri-

fuged at 3,000 rpm and filtered. An aliquot of this extract

was acidified with concentrated H2SO4 to pH = 1, centri-

fuged to separate coagulated humic acids (HA) and then, the

HA were re-dissolved with 0.1 M NaOH [23]. The non-

coagulated fraction with H2SO4 is referred to as fulvic acids

(CFA 60). The C contents of the THS (CTHS 60) and HA (CHA 60)

were determined by the Walkley–Black method [24].

Total mineralization coefficient (TMC) was calculated

according to [25] as follows:

TMC ¼ 100 �
X

mg C�CO2 Evolved=Initial TOC

Humification index (HI) was calculated as follows:

HI ¼ CTHS=TOC

The influence of treatments in physical soil properties

was determined by soil porosity, stability and size dis-

tribution of aggregates. Soil aggregate stability was

determined by water stability of aggregates between 1

and 2 mm using a wet sieving method according to [26].

Also, the size distribution of aggregates was studied by

sieving using a Microcomputer Screener FT-97. Soil

porosity was measured by mercury intrusion porosimetry.

Finally, DTA of samples after incubation during 60 days

was carried out in a thermobalance Labsys Setaram. About

80 mg of samples were heated at 15 �C min-1 until 850 �C

in air atmosphere using a flow rate of 40 mL min-1.
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Results and discussion

Main soil properties are shown in Table 1. Differences

between soils are mainly related with pH, TOC and texture

which are parameters that can influence in the soil respi-

ration process and consequently, in the soil biological

activity. SA was an acid soil whereas SN could be classi-

fied as neutral. TOC and N content were higher for SA than

SN. The metal content of both soils did not exceed the limit

values for soil metal concentration fixed by European [27]

and Spanish regulations [28].

Table 2 summarizes main properties of DPS and SL

used in this study. TOC was similar for two wastes. Main

differences are related to C/N ratio, EC and CaCO3

content. DPS shows elevated C/N ratio due to their lower

N content whereas the high EC of SL could produced

soil salinization. For this reason, the mixture of both

sludges is necessary for their agricultural application

(Table 3).

Table 3 summarizes the effect of DPS:SL addition in

EC, pH, TOC, NKjeldahl and C/N of soils. The increase of

the dosage logically produced an increment on the TOC

and NKjeldahl of soils. C/N ratio was stabilized between 17

and 20 which are recommendable values to soils. pH

evolution is different according to soil initial pH. In the

case of SN, pH was buffered according to Rato Nunes et al.

[12] that observed this tendency in soils with high initial

pH. On the other hand, pH of SA increased 0.7 units for the

highest dosage due to the CaCO3 added with the DPS:SL

mixture. Therefore, this amendment could be a liming

agent for acid soils.

Experimental results obtained during incubation process

of amended soils show that all treatments presented the

same mineralization pattern which was satisfactorily

described (r: 0.965–0,997) by means of a power model

CO2–C = a � tb [23] (Table 4; Fig. 1). The initial miner-

alization rate (a � b; t = 1) increased with the treatments

for the two soils due to the increment of supplied TOC. The

percentage of CO2 evolved for highest dosage was higher

Table 1 Soil Properties

SA SN

pH 5.89 7.41

EC (1:2.5)/lS cm-1, 25 �C 207 387

TOC/% 2.61 1.88

NKjeldahl/% 0.12 0.08

Ratio C/N 21.8 23.5

CEC/cmol(?) kg-1 20.47 15.80

CaCO3/% – 0.31

Soil moisture at 33 kPa/% 21.9 15.9

Soil moisture at 1,500 kPa/% 8.4 6.9

Cu/mg kg-1 9 9.14

Ni/mg kg-1 18.6 9.48

Cd/mg kg-1 0.38 0.20

Zn/mg kg-1 17 36.55

Pb/mg kg-1 24.8 6.26

Clay (\0.002 mm)/% 20 12

Silt (0.002–0.05 mm)/% 34 20

Sand (0.05–2 mm)/% 46 68

Texture Loam Sandy-loam

Table 2 De-inking paper sludge (DPS) and sewage sludges (SL)

properties

SL DPS

pH 6.88 7.93

EC (1:2.5)/lS cm-1, 25 �C 5.810 790

TOC/% 30 27.5

NKjeldahl/% 3.21 0.43

Ratio C/N 10 64

CEC/cmol(c) kg-1 64.90 25.37

CaCO3/% – 24.4

Cu/mg kg-1 225 367

Ni/mg kg-1 30 170

Cd/mg kg-1 1.6 9.8

Zn/mg kg-1 785 1,918

Pb/mg kg-1 114 57

Table 3 Main properties of the different treatments and mixture DPS-SL

EC (1:2.5)/lS cm-1 (25 �C) pH TOC/% NKjeldahl/% Ratio C/N

DPS-SL (1:1) 2,900 7.5 29.15 1.26 23

SN 387 7.4 1.88 0.08 23

SN20 515 7.4 2.30 0.12 19

SN40 642 7.3 2.75 0.16 17

SN80 1,005 7.3 3.51 0.2 18

SA 207 5.9 2.61 0.12 22

SA20 378 6.3 3.12 0.17 18

SA40 666 6.5 3.66 0.20 18

SA80 956 6.6 4.75 0.24 20
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for SA than for SN (Fig. 2). This percentage was in the

same range that data obtained for other authors in a soil

amended by similar rate of manure [29]. This fact is

according to increment in the TMC (Table 5). HI60 slightly

decreased and CFA 60 increased with the dosage. These

results indicate that, although the mineralization increased,

the HI60 decreased due to the addition of increasing

amounts of less evolutionated organic matter from DPS:SL

mixtures. Indeed, DPS:SL organic matter humification

during incubation tended to promote the formation of FA

substances and a weak transformation of more resistant HA

and non-extractable substances, principally consisting of

lignin from sawdust and other resistant compounds with a

high molecular size found in the residues [23].

The addition of the amendments increased the water

stability of soil aggregates (Table 6) and the aggregate size

(Fig. 2) due to the addition of organic matter according to

results obtained by other authors [30]. Soils treated with the

high rates of DPS:SL presented the higher occurrence of

soil aggregates longer than 8 mm. This increment of sta-

bility could be also related with the addition of stable

organic compounds as humic-like materials and cellulose

and with the higher biological activity [31]. These results

indicated that addition of organic materials plays an

Table 4 Parameter estimates for cumulative CO2–C evolved (mg C kg-1 dry mass) for the different treatments

C = a � t b r a � b (t = 1)/mg C kg-1 day-1 Mineralization rate

SN C = 72.41 � t0.181 0.997 13.11 dC/dt = 13.11 � t-0.819

SN20 C = 141.82 � t0.175 0.993 24.82 dC/dt = 24.82 � t-0.825

SN40 C = 170.38 � t0.156 0.977 26.58 dC/dt = 26.58 � t-0.844

SN80 C = 186.82 � t0.276 0.980 51.56 dC/dt = 51.56 � t-0.724

SA C = 12.80 � t0.525 0.971 6.72 dC/dt = 6.72 � t-0.475

SA20 C = 31.80 � t0.470 0.965 14.95 dC/dt = 14.95 � t-0.530

SA40 C = 64.19 � t0.493 0.975 31.65 dC/dt = 31.65 � t-0.507

SA80 C = 184.41 � t0.323 0.992 59.56 dC/dt = 59.56 � t-0.677

149.70

288.15

323.37

533.66

0

100

200

300

400

500

600

0 20 40 60

Time/days 

C
um

ul
at

iv
e 

C
O

2 
ev

ol
ve

d/
m

g
C

–C
O

2

/1
00

 g

SN SN20 SN40 SN80

84.08

178.08

382.51

647.51

0

100

200

300

400

500

600

700

0 20 40 60

Time/ days

C
um

ul
at

iv
e 

C
O

2 e
vo

lv
ed

/m
g

C
–C

O
2

/1
00

 g

SA SA20 SA40 SA80

Fig. 1 Cumulative curve of CO2 evolved during the incubation

experiments
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important role to prevent soil physical degradation by soil

crust formation and erosion [30].

Soil porosity increased more than 5% for the highest

rates (Table 6). These results were similar to that obtained

with compost [31] but better than obtained with olive-mill

wastewater [32]. This fact have a positive effect over soil

aeration which is related with the microbial activity and

growth yield according to different authors [31, 33] that

have demonstrated as organic matter improves soil struc-

ture, infiltration rate, aggregate stability to raindrop impact

and water holding capacity of the soil reducing soil loss

and runoff.

Previous studies have showed that thermal analysis is an

interesting tool to follow the evolution state of the organic

matter [34, 35]. Figure 3 shows DTA of amended soils in

air atmosphere. The oxidation of organic matter is pro-

duced between 250 and 550 �C and two main areas could

be distinguished. A comparative study of thermal behav-

iour of samples reveals that generally, the increment of

DPS:SL dosage produces an increase in the intensity of the

first exothermic peak due to the addition of immature

organic matter. In addition, the second peak enlarges and

moves to highest temperatures with the increment of

DPS:SL dosage, especially with amended soil SA accord-

ing to the increment in CTHS values.

Conclusions

(1) Addition of DPS:SL (1:1 in mass) increases the biolog-

ical activity of soils as shown the CO2 evolved and the

total humified substances content. Moreover, the highest

dosages leads to lowest humification index due to the

addition of immature organic matter from DPS:SL.

(2) Addition of DPS:SL improved the physical soil

conditions as shown the increment of water stability

of soil aggregates and soil porosity.

(3) Differential thermal analysis is an interesting tool to

evaluate the organic matter evolution of amended soils

during incubation process. Two peaks between 250 and

550 �C could be observed due to oxidation of organic

matter. The increment of the dosage increased the first

exothermic peak due to the addition of immature

organic matter from DPS:SL. In addition, the second

peak enlarges and moves to highest temperatures with

the increment of DPS:SL dosage according to the

increment in CTHS values.
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11. Filiatrault P, Camiré C, Norrie JP, Beauchamp CJ. Effects of de-

inking paper sludge on growth and nutritional status of alder and

aspen. Resour Conserv Recycl. 2006;48:209–26.

12. Rato Nunes J, Cabral F, Lopez-Piñeiro A. Short-term effects on
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